Internal Government Studies

1995

Reports and Presentations

Study Name: Electra-Optical Imager &

Radiometer

Team Members: NOAA/ORA(J. Alishouse &

N. Rao) & Aerospace

Corp(F. DeLuccia)

IPO POC: Lt. Kevin Westley

INTERNAL GOVERNMENT STUDIES - FY 1995 Electra-Optical Imager & Radiometer

Presentation/Paper Title	Author(s)	<u>Date</u>
"Final Report, Electro-Optical Imager and Radiometer(EOIR): An NPOESS Internal Concept Study"	J. Alishouse C.R. Rao	SEPT 95
"EO Sensor Design Studies, ICS Final Presentation and Report"	G. Rossano	28 SEPT 95
"EO Sensor Design Studies, ICS Final Presentation"	C.R.Rao	28 SEPT 95
"Calibration of the NPOESS E-O Sensor, ICS Final Presentation"	J. Alishouse	28 SEPT 95
"E-O Sensor Hardware Design Characteristics, Final Report and Future Study Recommendations"		SEPT 95
"E-O Band Selection for NPOESS Based on Key Parameters"	D. Lynch	SEPT 95
"EO Imager Baseline Requirements Presentation"	04444	JUNE 95
"ICS Interim Status Review Meeting, Electro- Optical Imager & Radiometer"	D. Lynch	29 JUNE 95
"ICS Interim Status Review, EO Imager & Radiometer:	C.R. Rao	29 JUNE 95
"ICS Interim Status Review, Calibration Issues for the NPOESS E-O Sensor"	J. Alishouse	27 JUNE 95
"EO Imager ICS- June Progress Report"	Lt. K. Westley	20 JUNE 95
"EO Imager ICS- May Progress Report"	Lt. K. Westley	16 MAY 95
"EO Imager ICS- April Progress Report"	Lt. K. Westley	2 MAY 95
"EO Sensor Baseline Design, EO Sensor Progress Report Briefing", (draft copy)	G. Rossano	21 APRIL 95

PRESENTATION TO

NPOESS IPO

CALIBRATION OF THE NPOESS E-O SENSOR

BY

JOHN C. ALISHOUSE

NOAA/NESDIS

OFFICE OF RESEARCH AND APPLICATIONS

28 SEP 95

PRE-LAUNCH CALIBRATION

Establish Correct Spectral Intervals

. :-}

E-O RADIOMETRIC CHANNELS

CENTRAL WAVELENGTH (Micrometers)	HALF-WIDTH (Micrometers)	1% OF PEAK (Micrometers)
0.615 ± 0.005	N/A	≥0.60 & ≤0.63
0.870 ± 0.005	N/A	≥0.85 & ≤0.89
1.61 ± 0.015	≥ 0.05	≥1.54 & ≤1.69
3.73 ± 0.03	≥ 0.19	≥3.44 & ≤4.01
8.60 ± 0.07	≥ 0.25	≥8.3 & ≤9.0
10.8 ± 0.1	10.3±0.1 & 11.3±0.1	≥9.9 & 111.9
12.0 ± 0.1	11.5±0.1 & 12.5±0.1	≥10.9 & ≤13.1

E-O RESOLVING POWER

Channel	Λ _c	ΔΛ	Resolving Power
1	615 nm	5 nm	123
2	870 nm	5 nm	174
3	1.61 Mm	0.015 Mm	107
4	3.73 Mm	0.03 Mm	124
5	8.60 Mm	0.07 Mm	123
6	10.8 Mm	0.1 Mm	108
7	12.0 Mm	0.1 Mm	120

Resolving Power = $\Lambda_c/\Delta\Lambda$

Mm = Micrometer

RADIOMETRIC ERRORS FROM SPECTRAL ERRORS

Satellite	Ratio ⁴ -Channel 1	Ratio ⁴ -Channel
NOAA-6	1.000	1.000
NOAA-7	0.991	1.121
NOAA-8	1.025	1.039
NOAA-9	1.069	1.077
NOAA-10	0.999	0.991

⁴ Ratios computed using **Neckel** and Labs (1984) solar spectral irradiance model

Spatial Resolution

Imaging - 650 m, global contiguous coverage
Radiometric - 1.1 km (nominal) at nadir, global
contiguous coverage with constant angular fieldof-view

Other Issues

Linearity of Response Striping (detector arrays) Stray (scattered) Light Channel Registration

POST-LAUNCH

On-board

Sun vs Lamps

<u>Diffuser</u>. vs Integrating Sphere

Monitor for Monitor

Heritage - SBUV/2, MODIS

Infrared

On-board BB

<u>Vicarious</u>

Stable Earth Targets

Supporting Surface and A/C Observations